skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Porter, Alan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While the COVID-19 pandemic morphs into less malignant forms, the virus has spawned a series of poorly understood, post-infection symptoms with staggering ramifications, i. e., long COVID (LC). This bibliometric study profiles the rapidly growing LC research domain [5,243 articles from PubMed and Web of Science (WoS)] to make its knowledge content more accessible. The article addresses What? Where? Who? and When? questions. A 13-topic Concept Grid presents bottom-up topic clusters. We break out those topics with other data fields, including disciplinary concentrations, topical details, and information on research “players” (countries, institutions, and authors) engaging in those topics. We provide access to results via a Dashboard website. We find a strongly growing, multidisciplinary LC research domain. That domain appears tightly connected based on shared research knowledge. However, we also observe notable concentrations of research activity in different disciplines. Data trends over 3 years of LC research suggest heightened attention to psychological and neurodegenerative symptoms, fatigue, and pulmonary involvement. 
    more » « less
  2. Covid-19 has been an unprecedented challenge that disruptively reshaped societies and brought a massive amount of novel knowledge to the scientific community. However, as this knowledge flood has surged, researchers have been disadvantaged by not having access to a platform that can quickly synthesize rapidly emerging information and link the expertise it contains to established knowledge foundations. Aiming to fill this gap, in this paper we propose a research framework that can assist scientists in identifying, retrieving, and understanding Covid-19 knowledge from the ocean of scholarly articles. Incorporating Principal Component Decomposition (PDC), a knowledge model based on text analytics, and hierarchical topic tree analysis, the proposed framework profiles the research landscape, retrieves topic-specific knowledge and visualizes knowledge structures. Addressing 127,971 Covid-19 research papers from PubMed, our PCD topic analysis identifies 35 research hotspots, along with their correlations and trends. The hierarchical topic tree analysis further segments the knowledge landscape of the whole dataset into clinical and public health branches at a macro level. To supplement this analysis, we also built a knowledge model from research papers on vaccinations and fetched 92,286 pre-Covid publications as the established knowledge foundation for reference. The hierarchical topic tree analysis results on the retrieved papers show multiple relevant biomedical disciplines and four future research topics: monoclonal antibody treatments, vaccinations in diabetic patients, vaccine immunity effectiveness and durability, and vaccination-related allergic sensitization. 
    more » « less
  3. Presentation showing the calculation of tech emergence indicators by state for nanotechnology research 
    more » « less
  4. We examine to what extent two variables – institutional groups and emerging terms – contribute to explain the network dynamics of research on microneedles by estimating an Exponential Random Graph Model (ERGM. 
    more » « less
  5. This study investigates the effect of regulatory uncertainty on the translation of scientific discovery on emerging research topics to technical applications in science-driven industry. Our empirical analysis using the case of the US Federal Drug and Food Administration’s release of the report on the regulatory approach to nanomedicine in 2007 shows that; (1) the regulatory uncertainty decelerated the translation of nanomedicine research to technical applications, (2) this effect was particular for the nanomedicine research on emerging topics in the field. Our further analysis suggests that the effect of the regulatory uncertainty originated from the suppressed business activities in the field where the regulatory uncertainty presents. Our study elaborates on how regulatory authority actions shape the innovation process by shedding light on the impact of regulatory uncertainty on the development of technical applications of an emerging scientific area. 
    more » « less
  6. Technological convergence network (TCN) is an effective method to identify the advancement of technology convergence. However, the previous TCN investigations are limited to a single level of IPC (abbreviation of International Patent Classification) rather than different IPC hierarchies, which can only provide decision support for policy-makers with one dimension instead of various ones. In this study, we propose a new approach to construct TCNs across different IPC hierarchies based on technology co-classification analysis, and further identify key technology fields by employing the indicator of betweenness centrality (BC) in the TCNs from any IPC hierarchy. This study makes two important contributions. First, theoretically, our study is to contribute to understanding the advancement of technological convergence from various IPC hierarchies, rather than a single IPC level. Second, methodologically, the new approach we propose can benefit decision-makers serving at various levels of technology management agencies. We conclude possible implications and future directions. 
    more » « less